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The Partial Donor Cell Method (PDM) as described here mixes a second-order scheme 
with the donor cell scheme. It keeps transported quantities monotone and minimizes diffusion. 
The PDM scheme in conjunction with a central difference scheme for the numerical solution 

of the hydrodynamic and magnetohydrodynamic equation has been used for a variety of 
problems. This scheme has been proven to be quite robust and can resolve contact discon- 
tinuities quite well. Several results of numerical simulations are presented. c 1987 Academ!c 

Press, Inc. 

I. INTRODUCTION 

Hydrodynamic codes have been used to simulate physical events ever since the 
occurrence of computers. Although there has been considerable progress :n 
numerical methods, the several major difficulties still remain. They are: 

(1) transporting of quantities across the mesh, 

(2) handling of shocks and contact discontinuities, which are inherent in 
compressible hydrodynamics, and, 

(3) the restriction of the timestep by the Courant condition. 

In general, a numerical code should be at least of second-order in space and first 
order in time. It should be Galilean invariant to the extent possible. This means, for 
instance, the dissipation in a shock of a given Mach number should be independent 
of the shock velocity in a given mesh. 

Codes should be conservative to the extent possible. There are the conservation 
laws for mass, momentum, and energy. Directly using total energy conservation, 
one obtains the internal energy, and hence the temperature, by subtracting the 
kinetic energy from the total energy. This may introduce large errors for the inter- 
nal energy. Therefore it is not always possible to determine the temperature with 
the accuracy necessary to compute chemical reactions and radiation losses: 
especially in multidimensional problems. One is thereby forced to use the equation. 
for the internal energy which is not conservative. However, there is also entropy 
which needs to be considered. The contention is made that a numerical code can be 
stable only if it either loses energy or increases entropy. 
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The restriction on the timestep by the Courant condition can be overcome in two 
ways, namely by using an implicit scheme or by limiting the characteristic velocities. 
In the first case one may lose significant phase information; in the second case, the 
velocities by which disturbances travel are limited below their physical value. 

As this issue of the Journal is dedicated to the memory of Keith V. Roberts, it 
seems appropriate to mention some of the early work. It was in 1960, when Keith 
was with the UKAEA in Harwell, that we simulated successfully the dynamic 
behaviour of a theta pinch (Ref. [l, Fig. 31). Out of this came a whole series of 
numerical simulations of plasma pinches. I think it was then that Keith coined the 
term “computational physics.” 

This paper, which discusses a simple numerical scheme, is a refinement of the 
rather simplistic method we used in our early work to overcome the above- 
mentioned obstacles. 

Section II discusses a simple transport scheme, namely the “partial donor cell 
method” (PDM). In general, a transport scheme has to be monotonic. It should not 
be diffusive. Furthermore, for zero velocities the transported quantities should not 
change. The PDM scheme as discussed mixes the donor cell method with a second- 
order scheme so as to minimize the diffusion. 

Section III shows results of a one-dimensional transport and compares it with the 
“flux corrected transport” method. Also a two-dimensional example is given. 

Section IV discusses the implementation of the PDM scheme into a hydrocode 
and gives the numerical formulae for solving the hydrodynamic equations. 

Finally, Section V gives some results of numerical simulations and discusses the 
relative merits of a more complicated scheme, such as the “MUSCL” code versus 
the simple code presented here. 

II. TRANSPORT SCHEME 

All modern transport schemes which involve a second or higher interpolation 
scheme consist of mixing this scheme with a lower order or first-order scheme in 
order to avoid the occurrence of extrema or, in other words, to be monotone. 

The “partial donor cell method” (PDM) (Ref. [Z] ) discussed here mixes a 
second-order scheme with a donor cell method in such a way as to minimize 
diffusion and assure monotonicity. It has been designed to achieve this with a 
minimum of operations, therefore keeping the computer time for large three- 
dimensional hydrodynamic codes to a minimum. 

Let us consider the continuity equation for a variable f with a velocity v in a 
Cartesian mesh. 

af -= -&If). at (11.1) 
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First let us define some operators 

In order to write the numerical scheme without indices, it is assumed that the 
operators act on j or i + 5, respectively. Furthermore, a n defines the variable at a 
time t + dt or t + :dr, respectively. 

We will consider two integration schemes, namely the central difference scheme 
and the Lax .- Wendroff scheme. The partial donor cell method, PDM, will mix 
these second-order schemes with the first-order donor cell scheme in such a way 
that the diffusion is minimized and the monotonicity is achieved: 

(a) The central difference scheme. In this scheme .f is defined at integral 
points in space in time and L’ at half integral points in space in time. With the help 
of the above defined operators, this scheme can be written as 

.f=f-dtV-(um+(f)j/V-(m+(xj). (11.5) 

(b) Lax-Wendroff. Here all quantities are defined at the same points in space 
and time. One defines an intermediate quantity at half points in space and time by 

(11.6) 

and, in the second step, the updated variable is given by 

f=f- drV-(i;f)/V-(mf(x)). (K7) 

In the discussion here, it does not matter whether the velocity is updated or not. 
It is well known that the cental difference scheme is unstable with an 

amplification factor A 

A2=1+u2dt2 
-27 (11.6) 

In contrast, the Lax-Wendroff scheme has an additionai diffusion term of 

D=‘t”dt 
2’ (11.9) 

which suppresses this instability. For a constant velocity it is a second-order inter- 
polation scheme and results in nonmonotonicity for functions which are steeper 
than a parabola. 
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In order to simplify the discussions in this section, we assume a constant velocity 
and a constant mesh spacing. Let us then define 

v dt 

&=dx. 
(II.10) 

The central difference scheme can then be written as 

f=f-FV-(m+(f)) (11.11) 

and the Lax-Wendroff scheme as a one-step scheme as 

f=jkV-- (m+f+q. (11.12) 

Let us introduce the partial donor cell method (PDM) by defining the PDM 
operator M as follows 

M’=m* -sign(r;)!V’ (11.13) 

for the central difference scheme and 

M*=m* -sign(v)(l -\el,zV+ (11.14) 

for all Lax-Wendroff scheme. The diffusion coefficients will be determined in such a 
way as to keep the scheme monotonic and to minimize diffusion. The FCT scheme 
by Boris (Ref. [3] does this in a different way by first introducing a large diffusion 
and then, in a second step, reducing the diffusion in such a way as not to introduce 
new extrema. As the first diffusion step is independent of the velocity, this may 
result in changing the function f for zero velocity. 

In the paper by Hain et al. (Ref. [ 11) which simulated the dynamics of pinches, 
we suppressed the occurrence of extrema during transport by restricting the trans- 
ported value to lie between the original value and values at the corresponding 
upwind neighbor point. It can easily be shown that this scheme is almost conser- 
vative. In the early days we were just not sophisticated enough to worry about such 
details as exact conservation. 

In formulae (11.13) and (11.14) one can easily see that q = 1 corresponds to the 
donor cell method. For the Lax-Wendroff scheme the maximal allowable diffusion 
is reduced by a factor of 1 - I&(. In order to simplify our discussion even further we 
will only consider the central difference scheme for the proof of monotonicity. The 
PDM scheme can then be written as 

f=f-A-(M+f,. (11.15) 
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Furthermore one can assume that V -f > 0. The proof for V-f< 0 goes in the 
same fashion. With this assumption the condition for monotonicity can be written 
as 

o<&V-(M+jj<V-f: (ra.as) 

Using the operator definitions from above, and leaving off the function ft this can 
be written as 

or 

-2V-<(l-t/)V+-(l-~-)V<2 L-1‘ V-. 
i 1 

(Il[~!siaj 
.E 

In the determination of the diffusion parameter, the direction in which tbe flow 
occurs is taken into account. In general, the PDM operator M+ is determined by 
the formula 

M’=m’ -isign(sign(V+).max[O, IV+/ 

-t(l-sign(u)) 1 sign(V+)csign(V’+) jV++/ 

-z (1 +sign(o)) ) sign(V $-sign(V)) /Vi], (TI.i.3) 

where A is the parameter which determines the amount of diffusion. A = Q wih 
result in II= 1, which means the donor cell method. 

From Eqs. (11.17) and (11.18) one can see that it is necessary to consider different 
cases for proving the monotonicity. Using the definition of the PDM operator for 
~1~0 and V >Q it is 

vV+=sign(V+)max(O,jV+/-+(sign(V+)+l)V) 

(IE.19) 

VV =sign(V)max(O, IV-1 -q(sign(V-)+ 1) 1 V--) 

(V- - is a V operator shifted one step to the left ). This results, for the differem 
cases, in the following: 

(1) (l-q)V’=O for V+<O 

(2) (1-q)Vf =v+ for OtVf <AV- (K20j 

(3) (1 -q)V+ =AV- for Vf > AV- 
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and 

G-4 (l-yI-)V--=o for V--GO 

(b) (1 -q-)v--- =AV- - for O<V--<fV- (11.21) 

Cc) (1 -s-)=V--- for V-- >+V. 

This can be combined in the following table: 

1 2 3 

a 0 V’ AV- 
-2v- < < 

b -‘@-- v+-/1v-- A(V- -v-~-) 

c -V- V' -v- (A-l)V- 

In the table, 61 gives a condition for A, namely ,4 < 2. The most stringent 
condition for E is derived from a3. It gives 

2 

EY-Ts 
(11.23) 

For A = 1 this gives E < = 3 which is not too restrictive for hydrodynamics, which 
must also meet the Courant condition. 

III. NUMERICAL RESULTS FOR TRANSPORT 

First we show the results of a one-dimensional transport of a square wave in 
comparison with the partial donor cell method (Ref. [2]) and a FCT scheme 
(Ref. [3]). In Ref. [2], a more detailed comparison is given. Reference [2] also 
gives the effect of changing the parameter A (just to add a little confusion, it is 
called B in the reference). Increasing A to 2 gives results which are identical with 
FCT for all practical purposes. 

The results for PDM obtained for A = 1 are given by the table in Fig. 1. The 
results are given for the transport of IO-point square wave transported 2 
meshpoints and 20 meshpoints across with E =0.2, using the central difference 
scheme and the one-step Lax-Wendroff scheme. One sees that the PDM scheme is 
a little bit more diffusive than the FCT scheme, also the Lax-Wendroff scheme is 
more diffusive for both schemes. This is the result of the extra diffusion term for the 
Lax-Wendroff scheme as discussed in the previous chapter. 
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t = 2.0 t = 20.0 
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FIGURE 1 

The graph in Fig. 2 shows the results of a two-dimensional transport. A square is 
rotated by 180’. It shows the results for a mesh of 201 x 201 points. Here A = 0.8 to 
add a bit more diffusion as is typically done in multi-dimensional hydrodynamic 
calculations. Although there is some erosion after turning 180”, the structure Es stilf 
a essentially a square, The corners erode a bit faster, as one would expect. Compare 
this also with results obtained by S. Zalesak with his multi-dimensional FCT 
scheme (Ref. 181)~ 

IV. THE HYDRODYNAMIC INTEGRATION SCHEME 

In this section, we give the implementation of the partial donor cell method for 
the numerical solution of the hydrodynamic equations. This scheme discussed here 
is the simplest one which is second order in space and first order in time. It uses a 
central difference scheme in conjunction with the PDM method. As the central dif- 
ference scheme is numerically unstable and the instabilities are suppressed by the 
PDM operator, it is able to retain contact discontinuities to a large extent. Shocks 
are handled by the von Neuman artificial viscosity technique in such a way that, for 
multi-dimensional problems, the shock width is a multiple of the mesh width in the 
different directions. 

The hydrodynamic equations are solved using the density, the velocities, and the 
internal energy. For an ideal gas (gamma law) the pressure is used directly. It is not 
difficult to formulate these equations in a complete conservative way and then solve 
them numerically in this form. One of the reasons discussed in the introduc- 
tion-namely to obtain the temperature as correctly as possible-requires that the 
equations be solved in the nonconservative way. Energy conservation provides a 
check on the correctness of the solution. 
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In general, solving the equations in a conservative form does not guarantee a 
correct solution. (As an example, keep the density constant and then solve the rest 
in a conservative way.) In addition to conserving quantities, the right amount of 
entropy should be generated in the shocks and transported correctly. Test runs !n 
1D have shown that all quantities are handled correctly (with a relative error of less 
than IO** - 4) except within the shock regions. These tests have also shown that in 
these regions one loses energy or increases entropy above its theoretical value. A 
conjecture is that a numerical scheme is stable only if it either loses energy or 
generates entropy above its theoretical value. 

The hydrodynamic equations which are solved use the density p, the velocities U, 
and the pressure p. For simplicity a gamma law for pressure and internal energy is 
assumed using the continuity equation 

and the momentum equations 

Here qe is the pressure created by the artificial viscosity in the /.I direction 1; is 
given by 

where c is the velocity of sound and dx, is the mesh width in p direction. 
The pressure equation is 

In the central difference integration scheme discussed here the density p and the 
pressure p (including the artificial shock pressure) are defined at integer points in 
space and time. The velocities u are defined at half integer points correspo~d~~~ to 
their components and half integer points in time. As one can easily see, this allows 
one to compute the divergence of a flux in a simple way. The divergence then can 
be numerically written as 

where S, are the surface areas at the corresponding half grid points. M, is I 
PDM operator nn the aipha direction. 
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Note that this scheme and others which use a nonlinear diffusion operator are 
not suited for incompressible flows such as in wheather prediction. To show this we 
expand the divergence by the chain rule 

w”.g) = m(g) v-+ m(f) vg (IV.6) 

which results in 

If numerically 

(Iv.8 j 

then 

Wdl =A 1 iT;(M,+f) nz,(S,v) +V,~(SSL~z)(nzz~Ma+ - 1 jf], (IV.9) 
a 

which is different from the pure transport equation. The use of Eq. (IVS) can 
therefore lead to a numerical compression effect while the function f is perfectly 
conserved. In contrast, using pure transport off--the first term in Eq. (IV.9)--will 
not be conservative if one uses a nonlinear diffusion operator in order to keep f 
monotonic. 

The numerical scheme for solving the differential equation given in Eq. (IV.l), 
(IV.2), and (IV.3) can be written as follows. 

The continuity equation is 

jL,i-dt& [V,(S .v,M:P)l. (IV.10) 
2 

The pressure (energy) equation is 

b=p--dt& 
‘2 i 

V,-(u,M,+p)+(1;--1)C(p+(la)Va(S,~,) . 1 (IV.1 1) 
3 

The momentum equations are 

(IV.12) 



PARTIALDONOR CELLMETHOD 141 

The coefficients c,~,, represent the coriolis and centrifugal terms. The shock pressure 
qp is given by 

q= -S,dxapmin O,&~V;(S,LJ,) 
a > 

x d% C-min(O,Vg(SBup))~ jrv.nlij 

The occurence of the difference of velocities in q may lead to difficulties in multi- 
dimensional problems. it has the advantage of steepening the shockfront. S, is a 
constant. Sh = t gives the same stability limit on the time step given by the resulting 
diffusion equation as the Courant condition. .4s test runs have shown, the best 
results are obtained by S, = 4. 

Besides reflective and periodic boundary conditions which are imposed by the 
problem at hand, boundaries should be kept away so far as possible. The flow in 
and out of such boundaries should be diffusive in order to avoid the generation of 
waves. 

V. NUMERICAL RESULTS 

In the paper by Hain et al. [l], as mentioned in the Introduction, we computed 
the dynamics of a theta pinch according to the circuit data provided. We used an 
Eulerian mesh. The numerical scheme consisted of a Lagrangian compression step 
and then a second-order re-mapping) (see Section II). Shocks were handled with a 
von Neuman artificial viscosity. The AlfvCn speed B/s was limited by not 
allowing the density to fall under a minimum value. 

On invitation by Keith V. Roberts we went to England. Our work was greatly 
facilitated by the fact that Keith provided us with the newly released FORTRAN 
compiler and suggested that we write the program in the new high language. After 
completing the simulations, we compared the results with the experiment performed 
in Munich by Koeppendoerfer (Fig. 3). To our great satisfaction, they agreed 
remarkably well, thereby demonstrating the relevance of “computational physics.” 

The graph in Fig. 4 shows a simulation of Sod’s (Ref. [4)) problem. The initial 
values are constant with a jump of pressure and density. The resulting Mach num- 
ber is about 1.3. The theoretical solution of this Riemann problem can be computed 
and is given on the graph. It consists of a shockwave, a contact discontinuity, and a 
rarefaction wave, as shown in the graph. The numerical solution overshoots the 
density at the shock by a small amount. The contact discontinuity is represented 
quite well. If one defines the position of the shock as the point of the maximum 
negative divergence then this position agrees almost exactly with the theoretical 
value. 

581,73:1-10 
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The graph in Fig. 5 shows a computation of a Mach 3 shock hitting a barrier. 
Results of different computation schemes have been discussed at length by Collela 
(Ref. [S]). The results obtained here were achieved without an extra procedure at 
the corner, as described in the paper by Collela. The presented results are in good 
agreement with Collela’s results. But they lack a detailed structure. I think that the 
less complicated schemes like the PDM scheme, the FCT scheme and similar simple 
procedures are useful if one does not care about line structures. The MUSCL code 
which uses a Riemann solver at every point may give better detailed results for the 
price of a complicated, and therefore relatively slow, code. 
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FIGURE 4 
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The graph in Figs. 6 and 7 show the result for the problem of the thermal layer. A 
shock runs into a hot bottom layer which is a few meshpoints high. If one runs this 
problem for a long time in which the shock travels several hundred layer heights 
the MUSCL code did show instabilities in the layer. The graph shows two different 
calculations, namely one with A = 0.8 and a less diffusive one with A = 1. In the tirst 
case the occurrence of the instabilities are just beginning, where in the second case 
they are clearly shown. The fluctuations in the density are almost 15%. The code 
has not been run further, but it is clear that these instabilities will grow to the point 
of completely disrupting the computation. The MUSCL code achieves this earlier in 
time. It seems that this hydrodynamic instability is a very weak one and can be sup- 
pressed by a large enough numerical diffusion as illustrated in the comparison. 

The graph in Fig. 8 shows a three-dimensional simulation of earth’s bowshock 
(Ref. [7]). Intensive computations have been performed by Brecht el al. (Ref. [7]) 
of the interaction of the solar wind and the earth’s magnetic field. 
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VI. CONCLUSION 

The partial donor cell method (PDM) in conjunction with a central difference 
scheme has been used to simulate a variety of physical problems. The scheme is the 
simplest second-order scheme possible. As the central difference scheme is unstable, 
and the PDM operator suppresses these instabilities, it can resolve contact discon- 
tinuities quite well. The scheme is robust and fast. 
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